luni, 30 ianuarie 2023

Analysis of neural networks-based heart disease prediction system

Zoltan Szucs


Heart disease is one of the major reasons for the increase in death rates. Healthcare is one amongst the most important beneficiaries of huge knowledge & analytics, extracting medical data becoming more and more necessary for prediction and treatment of high death rate due to heart attack. The objective of the study is to analyze different research using different machine learning and deep learning techniques to conclude which is more effective.

Machine learning

The value of machine learning technology is recognized well in Health care industry, which has a large pool of data. It helps medical experts to predict the disease and leads to improvise the treatment.

Artificial Neural Network

An ANN is a multi-layer network containing input, hidden and output neurons. It is trained to teach the problem-solving technique to the network using training data, the training data being validated to stop when it is over fitting in the network and to check the performance

Deep learning

DL are systems that make their own decisions based on intelligence. The advantage of DL is that it allows automatic feature extraction and makes feature learning easier. This approach helps to discover the structure in the data.


Performance analysis of Heart disease prediction using ML and DL




Conclusions

Most of the research works used classification methods such as Association rule mining, Naïve Bayes, Decision tree, ANN, and fuzzy logic for predicting heart diseases. From the results, it is inferred that the performance of the classifier is improved with the Feature subset selection.

Neural network is a training method which works similar to the human brain, and it is an effective technique for predicting the relationship between both the input and the output.

Applying machine learning techniques to medical data helps to predict disease accurately.

Deep learning technique is necessary to process the vast and complex data in the medical field.

From the results, artificial neural network is providing the best performance for heart disease prediction.

 

REFERENCES:

1.     Rajamhoana, S., Devi, C. A., Umamaheswari, K., Kiruba, R., Karunya, K., & Deepika, R. (2018). Analysis of Neural Networks Based Heart Disease Prediction System. 11th International Conference on Human System Interaction (HSI). doi:10.1109/hsi.2018.8431153

marți, 17 ianuarie 2023

Ethereum-and-xgboost

 Prediction of Ehereum Price via xgBoost

Introducere.

Ethereum, un blockchain descentralizat, open-source, cu funcționalitate de contract inteligent, a fost propus în 2013 de programatorul Vitalik Buterin. Dezvoltarea a fost finanțată prin crowdfunding în 2014, iar rețeaua a intrat în funcțiune pe 30 iulie 2015, cu 72 de milioane de monede.
Câteva lucruri interesante despre Ethereum(ETH):
Ether (ETH) este criptomoneda nativă a platformei. Este a doua cea mai mare criptomonedă după capitalizarea bursieră, după Bitcoin. Ethereum este cel mai utilizat blockchain.
Unele dintre cele mai importante corporații din lume s-au alăturat SEE (Alianța Ethereum, este o colaborare a multor start-up-uri din bloc) și au susținut „dezvoltarea ulterioară”. Unele dintre cele mai cunoscute companii sunt Samsung SDS, Toyota Research Institute, Banco Santander, Microsoft, J.P.Morgan, Merck GaA, Intel, Deloitte, DTCC, ING, Accenture, Consensys, Bank of Canada și BNY Mellon.

Informații referitoare la algoritmul folosit - xgBoost

XGBoost înseamnă „Extreme Gradient Boosting”. XGBoost este un framework optimizat de creștere a gradientului distribuit concepută pentru a fi extrem de eficientă, flexibilă și portabilă. Implementează algoritmi de învățare automată în cadrul Gradient Boosting. Oferă o creștere a arborelui paralel pentru a rezolva multe probleme de știință a datelor într-un mod rapid și precis.

Caracteristici XGBoost:
Învățare regularizată: Termenul de regularizare ajută la netezirea greutăților finale învățate pentru a evita supraajustarea. Obiectivul regularizat va tinde să selecteze un model care utilizează funcții simple și predictive.
Creșterea arborelui de gradient: Modelul ansamblului de arbori nu poate fi optimizat folosind metode tradiționale de optimizare în spațiul euclidian. În schimb, modelul este antrenat într-o manieră aditivă.
Contracție și subeșantionare pe coloană: Pe lângă obiectivul regularizat, sunt utilizate două tehnici suplimentare pentru a preveni supraadaptarea. Prima tehnică este contracția introdusă de Friedman. Contracția crește greutățile nou adăugate cu un factor η după fiecare pas de creștere a arborelui. Similar cu o rată de învățare în optimizarea stocastică, contracția reduce influența fiecărui copac și lasă spațiu pentru viitorii copaci pentru a îmbunătăți modelul.

Informații referitoare la setul date



Datele constau în total din 1813 înregistrări (1813 zile) cu 7 coloane.
Marimea: 55.3 kB
2015-prezent


Intrebari frecvente

Este Ethereum o investiție bună?
Pe piețele de criptomonede volatile, cu risc ridicat, este important să vă faceți propria cercetare pe o monedă sau un jeton pentru a determina dacă este potrivit pentru portofoliul dvs. personal de investiții. Dacă ETH este o investiție potrivită pentru dvs., va depinde de toleranța dvs. la risc și de cât de mult intenționați să investiți. Rețineți că performanța trecută nu este o garanție a randamentelor viitoare și nu investiți niciodată bani pe care nu vă puteți permite să-i pierdeți.
Cât de sus poate ajunge Ethereum în 2022? 
Este greu de spus. Nu știm ce se va întâmpla ca urmare a Merge pe termen lung, mai ales după ce piața s-a prăbușit la scurt timp după aceea, așa că ar trebui să așteptăm și să vedem.
De asemenea, țineți cont de faptul că criptomonedele pot fi foarte volatile și că prețurile pot scădea și crește.
Ar trebui să investesc în Ethereum?
Aceasta este o întrebare la care va trebui să răspunzi singur. Înainte de a face acest lucru, totuși, va trebui să efectuați propria cercetare.
Nu investiți niciodată mai mulți bani decât vă puteți permite să pierdeți, deoarece prețurile pot scădea și crește.

Bibliografie

  1. Nadeem. “Introduction to XGBoost Algorithm | by Nadeem | Analytics Vidhya | Medium.” Medium, Analytics Vidhya, 5 Mar. 2021, https://medium.com/analytics-vidhya/introduction-to-xgboost-algorithm-d2e7fad76b04.
  2. saikiranputta. “Ethereum EDA and XGBOOST Starter Code.  | Kaggle.” Kaggle: Your Machine Learning and Data Science Community, Kaggle, 11 July 2017, https://www.kaggle.com/code/saikiranputta/ethereum-eda-and-xgboost-starter-code/notebook.
  3. ysthehurricane. “Bitcoin,Dogecoin,Etc Price Prediction -XGBoost | Kaggle.” Kaggle: Your Machine Learning and Data Science Community, Kaggle, 14 Sept. 2021, https://www.kaggle.com/code/ysthehurricane/bitcoin-dogecoin-etc-price-prediction-xgboost.
  4. Dannen, Chris. Introducing Ethereum and solidity. Vol. 1. Berkeley: Apress, 2017.
  5. Brownlee, Jason. XGBoost With python: Gradient boosted trees with XGBoost and scikit-learn. Machine Learning Mastery, 2016.

marți, 10 ianuarie 2023

NVIDIA DLSS 3

 

Deep learning super sampling (DLSS) is a family of real-time deep learning image enhancement and upscaling technologies developed by Nvidia that are exclusive to its RTX line of graphics cards, and available in a number of video games.  The goal of these technologies is to allow the majority of the graphics pipeline to run at a lower resolution for increased performance, and then infer a higher resolution image from this that contains the same level of detail as if the image had been rendered at this higher resolution. This allows for higher graphical settings and/or frame rates for a given output resolution. AMD FSR and Intel XeSS are similar, but DLSS has always been the king of the upscalers, as it uses more sophisticated machine learning/AI techniques to piece together more accurate frames.
As of September 2022, the 1st and 2nd generation of DLSS is available on all RTX branded cards from Nvidia in supported titles, while the 3rd generation to generation RTX 4000 series graphics cards.
DLSS 3 augments DLSS 2.0 by making use of an optical-flow frame generation technique. The DLSS frame generation algorithm takes two rendered frames from the rendering pipeline, and generates a new frame that smoothly transitions between them. So for every frame rendered, one additional frame is generated.
DLSS 3.0 makes use of a new generation Optical Flow Accelerator (OFA) included in Ada Lovelace generation RTX GPUs. The new OFA is faster and more accurate than the OFA already available in previous Turing and Ampere RTX GPUs. This results in DLSS 3.0 being exclusive for the RTX 4000 Series.
DLSS also requires and applies its own anti-aliasing method. It operates on similar principles to TAA. Like TAA, it uses information from past frames to produce the current frame. Unlike TAA, DLSS does not sample every pixel in every frame. Instead, it samples different pixels in different frames and uses pixels sampled in past frames to fill in the unsampled pixels in the current frame. DLSS uses machine learning to combine samples in the current frame and past frames, and it can be thought of as an advanced and superior TAA implementation made possible by the available tensor cores.
Nvidia offers deep learning anti-aliasing (DLAA). DLAA provides the same AI-driven anti-aliasing DLSS uses, but without any upscaling or downscaling functionality.



DLSS 3: upscaling and generated frame quality


The author of this article tested DLSS 3, using the RTX 4090, in three games: Cyberpunk 2077, Microsoft Flight Simulator, and F1 22. As expected from the successor to DLSS 2.4, DLSS 3’s upscaling looks impressive: on its Quality and even Balanced modes, upscaled 4K looks just as good as native 3840x2160 across all three games. On its second-fastest Performance mode, there is a noticeable drop in water quality in Microsoft Flight Simulator, but in terms of sharpness it is seemingly very close to native 4k. There’s little to no fudging of fine details, no strange outlines around objects, and the AI-based anti-aliasing remains superior to just about every built-in AA option.

For the most part, generated frames look 99% like a traditionally rendered frame. Here’s a randomly chosen, fully AI-generated frame in F1 22 (upscaled to 4K), followed by a successive rendered frame:

 

An AI-generated DLSS 3 frame in F1 2022, showing a driver's-eye view of a race in Monaco.  
 3840x2160, Ultra High quality, DLSS 3 Quality (generated frame) 

 

 

 A traditionally rendered DLSS 3 frame in F1 2022, showing a driver's-eye view of a race in Monaco. 
 3840x2160, Ultra High quality, DLSS 3 Quality (rendered frame)
 
The generated frame looks indistinguishable from a rendered frame. Apart from the visual
artifact that can be seen in the timer on the upper-right corner.

  

A Cyberpunk 2077 comparison image showing how traditionally rendered frames compare to AI generated frames in DLSS 3.  

Left: generated frame. Right: rendered frame

 

And to finish it off, some statistics:

 

Analysis of neural networks-based heart disease prediction system

Zoltan Szucs Heart disease is one of the major reasons for the increase in death rates. Healthcare is one amongst the most important benefic...